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The boundary conditions on the free boundary of a thin vibrating plate of variable thickness, when the 

thickness of the plate is changed abruptly, are derived. The left-hand side of the fourth-order 

differential equation describing the vibrations of the plate has a singularity of the g-function type and 

its derivative. Since the right-hand side of this equation has no singularity, it is natural to equate the 

coefficients of the generalized functions to zero. These equations also represent the boundary 

conditions. This procedure for finding the boundary conditions is not new [l, 21, but its application to a 
fourth-order equation involves the need to take partial derivatives of the g-function distributed over 
the contour. A formula for calculating such derivatives is derived and is used to obtain the boundary 

conditions. 

THE TRADITIONAL method of solving problems of this type [3,4] consists of using the variational principle. 
The integral over the surface of the plate is transformed into an integral over its edge, which is extremely 
time consuming. The approach proposed below is simpler and physically clearer. 

1. FORMULATION OF THE PROBLEM 

We will start from the equation of motion of thin plates (see, for example, [S]) 

%v =D(l- v) 
d2W 

axay; D= 
Eh3 

12(1- 9) ’ 
m=ph 

(1.1) 

Here w is the transverse displacement of the plate, h is its thickness, u is the density, or is the angular 
frequency of the vibrations, and E and v are the elastic constants. 

Note that Eq. (1.1) holds for an arbitrary distribution of the density, thickness and elastic constants 
along the surface of the plate. In particular, it remains true when the thickness of the plate falls to zero on 
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passing through the edge. The moments M,, M, and Mv are then discontinuous functions. Conse- 
quentiy, their second derivatives will contain a ~funct~on and its derivative. Since the right-hand side of 
Eq. (1.1) does not contain a singularity, the coefficients of the generahxed functions must be equated to 
zero. Hence, the problem reduces to calculating the derivatives of the moments under conditions when 

the thickness h has a discontinuity. 

2 DERIVATION OF THE BOUNDARY CONDITIONS 

The moments can obviously be written in the form 

M(x,y)= r*(*.y) inside the edge 

outside the edge 
(2-l) 

Hence and henceforth the asterisk will denote values of quantities on the plate, i.e. the “usual” 
moments and their “usual” derivatives (the limits of these derivatives when the point approaches the 

edge). 
Suppose n is the inward unit normal to the edge and i is the unit tangential vector in the positive 

direction of circumventing the plate. 
The first partial derivatives of functions of the type (2.1) are given by the formulae [6] 

(2.2) 

where I’ is the edge of the plate and i5( r) is the ~st~buted &function. 
On repeated differentiation of one of the expressions in (2.2) the first term, representing a dis - 

continuous function, allows the use of equations of the form (2.2). The calculation of the derivative of the 

second term requires a special approach (see the Appendix) 

(2.3) 

In place of p(T) we can put M*(T). The symbol 6’(r) denotes a function of the double-layer type. The 
determination and properties of the functions 6 and 6’ are discussed in the Appendix. 

Using (2.2) and (2.3) we can calculate the second derivatives in Eq. (1.1). We will introduce the angle cp 

between x and n in a positive direction. Equating the coefficients of 6’ and 6 to zero in Eq. (l.l), we 

obtain the required boundary conditions 

-[M,cos2(P+M,sin2cp-2M,sincpcoscp]=O (2.4) 

aM i3M 
-%oscp+-&intp - 
ax ay ( 

~y’j%~lp+%o*T + 
ay 1 (2.5) 

The asterisk over the moments and their derivatives is omitted everywhere. 
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3. DISCUSSION OF THE RESULTS 

We will compare the boundary conditions (2.4) and (2.5) with the known boundary conditions. We first 

note that the boundary conditions obtained agree with those derived in 141. For the special case of a 
recti&ear edge, sitnated along the axis (see, for exampb, f5, 71) 

M,=O, aMXlax-2aM,/ay=0 (3.1) 

These expressions follow from (2.4) and (2.5) when cp =O. 
The boundary conditions for an edge of arbitrary shape for a constant plate thickness f3] follow from 

(2.4) and (25) if we put h = const and assume n to be the outward nom&. 
Note that the method proposed enables one to obtain the boundary conditions on the free edge for any 

equation of the theory of elasticity. It is merely necessary that this equation should be used in the case of 
variable stiffness. 

On the other hand, the boundary conditions written in the farm (2.4), (2.5) enable the methods of 
potential theory to be empioyed to solve boundary-value problems of the theory of thin pIates_ Suppose 
we know the Green’s function of Eq. (l.l), i.e. the fun&on w = G(P,, P2)r such that 

trw, a2hfx if%4 2 
V$+--?+2 ~+&Ynv=6(q -P2) 

ay MY 

(8 and R$ are points on the plate), ~~ferentiation is carried out with respect to the coordinates of the 
point 4. In a number of cases, for example, for an acute-angfed elastic wedge, it is possible to obtain the 
function G. 

Suppose that we are given boundary conditions of the following form on the edge of the plate 

where the operators $ and Bz are the left-hand sides of Eqs (2a) and (2.9, respectively. The solution of 
this problem will be sought in the form of a linear combination of potentials of a single and double layer 

where I is the inward normal to the edge with respect to the coordinates of the point P2. The integration 
is carried out over the coordinates of the point Pz. It can be seen that 

According to the above discussion, the functions R and f, define discontinuities in the values of the 
operators Bi and 4 on the edge of the plate. From general considerations, similar to those used in 
potential theory, on the edge itself the operators Br and B2 give the arithmetic mean values on the right 
and on the left. Hence, the boundary-value problem reduces to a system of Fredholm equations of the 
second kind 

k=1.2, 515 EI- 
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APPENDIX 

The distributed generalized functions S and 6’ are specified as follows. We will assume that &he region 
S, the contour I inside it, and an arbitrary smooth function CD, equal to zero outside S, are given in the 

plane. Then 

Suppose p(I) is a function given on the contour I and having the meaning of the weight of the g- 
function. We will calculate the partial derivative of @(I) with respect to r(~ = x, y ). Integrating by parts, 
we obtain 

(A.21 

Comparing this result with (A.l), by virtue of the arbitrary nature of Q we can conclude that (2.3) 

holds. 
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